

PSIRP
Publish-Subscribe Internet Routing Paradigm

FP7-INFSO-ICT-216173

DELIVERABLE D3.1

Prototype Platform and Applications Plan and
Definition

Title of Contract Publish-Subscribe Internet Routing Paradigm
Acronym PSIRP
Contract Number FP7-INFSO-ICT 216173
Start date of the project 1.1.2008
Duration 30 months, until 30.6.2010
Document Title: Prototype Platform and Applications Plan and Definition
Date of preparation 29.4.2008
Author(s) Petri Jokela (LMF), Teemu Rinta-aho (LMF), Dirk

Trossen (BT), George Xylomenos (AUEB-RC), Janne
Tuononen (NSN)

Responsible of the deliverable Petri Jokela
 Phone: +358442992413
 Fax:
 Email: petri.jokela@ericsson.com
Reviewed by Dirk Trossen (BT), Janne Riihijärvi (RWTH Aachen)
Target Dissemination Level: Public
Status of the Document: Completed
Version 1.0
Document location http://www.psirp.org/Deliverables/D3.1
Project web site http://www.psirp.org/

This document has been produced in the context of the PSIRP Project. The PSIRP Project is part of
the European Community’s Seventh Framework Program for research and is as such funded by the
European Commission.
All information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors view.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 2(11)

Table of Contents

Prototype Platform and Applications Plan and Definition ...1
1 Introduction ...3

1.1 Abbreviations ...3
2 Environment and Tools ...4

2.1 Code Management ..4
2.2 Operating System ..5

3 Prototype Plan ..6
3.1 Overview of Implementation Modules..6
3.2 APIs ...7
3.3 Applications..8
3.4 Upper Layer Implementation (UpLI)...9
3.5 Lower Layer Implementation (LoLI) ...10

4 Conclusions ..11
5 References..11

Executive summary

The PSIRP prototyping work package is responsible for generating prototypes of the PSIRP
architecture designed in the WP2. During the project this WP will create few iterations of the
prototype, providing feedback on the architecture, as well as providing demonstrations for
illustrating the publish/subscribe network operations.

In this deliverable, the initially three-layer structure and the interfaces between the layers are
briefly described. The lower and upper layer implementations (LoLI and UpLI, respectively)
are described in more details in the deliverable 3.2, and this deliverable 3.1 gives more
detailed information about the application development process as well as the platform and
tools that will be used during the project. In addition, the licensing terms that have been
approved in the project are briefly described and guidance for software developers is given.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 3(11)

1 Introduction
The current Internet has properties that are nowadays considered problems. One of the
problems is the sender-centric way of thinking: the network serves the sender of data and
delivers the data always to the destination that the sender has specified. This doesn’t give the
receiver any control and it has led to problems e.g. in the form of Denial of Service attacks.
The publish/subscribe paradigm (pub/sub) has been proposed as a solution to such problems
in the Internet. In the PSIRP project the Internet architecture will be redesigned from the
publish/subscribe point of view.

Designing a new architecture requires also active work on testing the proposed architectural
decisions, giving feedback from tests to the architecture designers, and redesigning the
architecture if there are problems when running in a real environment. In PSIRP, the WP3 has
the responsibility of creating prototype based on the pub/sub architecture created in WP2,
architecture work package.

The system has been initially divided into three layers; lower layer, upper layer and
applications. One of the purposes of this document is to give a more high level description of
these three different areas and interfaces between them. In addition, the application work is
described in more detail. The lower layer implementation (LoLI) and upper layer
implementation (UpLI) will be described in more detail in the deliverable 3.2 and in this
document only a rough description of their functionality is given. The application development
activity includes an innovation process that gives guidelines to initiate and perform co-
operation with external partners, e.g. universities to develop applications on top of the
implemented UpLI and LoLI.

In addition, an essential topic in this deliverable is the description of the tools used for
prototype development. This document specifies the operating systems that will be used in the
project as well as the required tools for prototype development and version management.

In the project, a licensing scheme has been agreed on and this document gives guidelines as
to how the prototype developers need to take this into account when writing implementations
and what needs to be considered when the prototype code is distributed between partners or
outside the project.

1.1 Abbreviations

LoLI Lower Layer Implementation

PSIRP Publish Subscribe Internet
Routing Paradigm

TCP Transmission Control Protocol

UDP User Datagram Protocol

UpLI Upper Layer Implementation

WiFi Wireless Local Area Network
Certified by the WiFi Alliance

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 4(11)

2 Environment and Tools
In this section the prototype code development tools and management system are described.
Also the licensing terms that have been agreed in the project as well as how they are applied
to the code are introduced.

2.1 Code Management
2.1.1 Licensing
The project has decided that a dual-licensing model is used in the project. All code shared
between partners or distributed externally under the same license. The license text that must
be included in every code file written in the project can be found from the project web pages.

The license text that is included in all code written in the project states that the user of the
code can select either BSD or GPLv2 license, which ever suits best the user needs.

As an exception, if pieces of code that are originally under other licenses are used in the
project, they have to be clearly marked and listed in the project web pages in the relevant
section. The distribution of such code needs to follow the conditions of the original license. For
example, if Linux kernel code is modified to support pub/sub code, the original license in Linux
mandates the usage of GPL for the pub/sub code.

2.1.2 Code Availability
An internal approval process will decide when code can be published outside the project. The
published code needs to be stable (enough). Before publishing, there has to be a review
period during which the code will be checked to avoid publishing anything that is not meant for
publishing. Published versions have to be marked with reviewed and ready for publication
tags.

The development repository is not directly visible outside the project. However, it may be
made available during the latter stages of the project, when the architecture and the
implementation are somewhat mature.

For both internal and external use, it is desirable that the software is also made available as
easily installable binary packages (like Debian .deb or FreeBSD .tgz) so that people who want
to try the software will not need to compile it. For internal use, these should be made available
early in the project, e.g. as daily builds.

When the project decides to publish a public version of the code, each partner has to have at
least one week time to review the published code before the publishing date. When a new
version of the code is made available, it will be announced on the project web pages together
with required instructions on how to download and install the code.

2.1.3 Code Repository and Version Management
The code repository is maintained at HIIT and software version management is handled using
Subversion. Detailed information about the repository as well as rules of usage will be
available at the project web pages.

The code repository is accessible by the project members. In case of collaboration (Section
3.2), full or limited access can be granted to external partners developing software on top of
PSIRP platform.

2.1.4 Community Process
Involvement of the external developer community is desired and one of the main reasons to
open source the software developed in this project. In order to harvest this collective
intelligence, community processes, such as bug reports, forums, wish lists, and future

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 5(11)

requirements, will be established on the public website. This allows for an active dialogue with
the external developer community.

2.2 Operating System
While the target of the project is to design an architecture that will be possible to implement on
any computing platform, we have to note that it is not feasible during a research project to
implement the prototypes on every operating system, especially considering that the lower
layers of the implementation will have to reside close to the hardware, at least for performance
reasons.

However, one limiting factor that has to be taken into account when selecting tools and
environments for development is that in the project the portability of the code to other
operating systems has to be maintained to the extent possible. The project will develop a
single demonstrator where all different parts of the implementation are merged. The
development has been divided into three main parts: applications, upper layer implementation
and lower layer implementation (see Section 3).

For the lower layer implementation (Section 3.5) the FreeBSD 7.x operating system has been
chosen as the main implementation platform. The decision is largely based on technical
aspects: the BSD networking code is well documented, and this is especially important
considering the fact that parts of the code will have to be implemented in the kernel for
performance reasons. From the dissemination point of view, BSD is used also in other
networking research communities. In a similar way as the innovation process for applications
is defined in Section 3.2, future development in different operating systems is also possible
through external partners. See Table 1 for a comparison between different operating systems.

The upper layer implementation (Section 3.4) as well as application development (Section 3.3)
will use an operating system neutral platform for development so as to enable easy portability,
even though the FreeBSD 7.x platform will be the only environment where the lower layer
implementation will initially be available. Implemented parts need to maintain the portability to
FreeBSD 7.x platform so that the different implementations can be merged into one single
demonstrator.

While these software parts are implemented in user space, porting them to FreeBSD should
be straightforward as long as they do not use features that are available on some OSes only.
These kinds of features have to be avoided.

The interface between the lower and upper layers will have to be designed to provide low
coupling between the layers, allowing the independent evolution of each layer and preventing
the need for considerable integration or porting efforts when both layers are to be used
together at the same node.

The programming language that will be used in the lower layer implementation is C, the
language of choice for the kernel of most operating systems. The upper layer implementation
and applications may use other languages, with preference to portable languages such as
Java or Python.

It is desirable that the source code development environment is setup so that it supports
implementations on multiple platforms already from the beginning. This means that tools such
as autoconf and automake will be used for configuring the code so that the user will not have
to manually configure the distribution for compilation in different environments.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 6(11)

Table 1 OS Comparison

OS Kernel level
development

Used in
research

Cost Users Licensing

Linux Yes widely Free Mostly skilled people GPL
*BSD

(FreeBSD)
Yes widely Free Mostly skilled people BSD

Windows No Not widely in
network
protocol
research

Not free Widely used Proprietary

MAC Yes not widely Not free Professional / Business
people, key persons in
network research area

BSD

3 Prototype Plan
In this section the main parts of the implementation are described. First, we introduce the
initial separation to different implementation modules, and after that describe the application
development process. Finally, the initial plans for the upper and lower layer implementations
are described.

3.1 Overview of Implementation Modules

Figure 1 Implementation modules and APIs

The PSIRP prototype will be implemented in a modular manner, the outline of the foreseen
structure being given in Figure 1. The core PSIRP prototype will be implemented in two layers:

1. The lower layer will mainly, if not exclusively, reside in kernel space for performance
reasons, providing whatever functionality is deemed to be critical enough to justify its
inclusion into the kernel. Examples of such functionality include interfacing with

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 7(11)

network devices, data forwarding and data manipulation for forwarding purposes. The
lower layer will be the hardest part to port since it may be quite kernel specific,
especially if it is fine tuned for performance. Nevertheless, every effort will be made to
write as portable code as possible. Furthermore, the lower layer will be the only
common part in all nodes participating in a PSIRP based future Internet.

2. The upper layer(s) will reside exclusively in user space for flexibility reasons, providing
whatever functionality is deemed necessary to support writing PSIRP applications,
supplementing the functionality provided by the lower layer. Examples of such
functionality include providing primitives for publishing data and subscribing to
publications. The upper layer(s) should be portable to any open source operating
system providing an implementation of the lower layer. It will be possible for a PSIRP
network to support multiple types or multiple instances of the upper layer functionality.
For example, a single PSIRP node may support both reliable and unreliable data
publication via two different upper layer implementations.

3.2 APIs
The PSIRP prototype will incorporate implementations of two interfaces:

1. The lower layer will implement the PSIRP kernel API for the benefit of the upper
layer(s). While the exact functionality provided by the PSIRP kernel API will depend on
the actual division of work between the upper and lower PSIRP layers, it is expected
that this API will be implemented as a set of new system calls, wrapped in a set of thin
library functions, for example publish() and subscribe() instead of write() and read(). It
is also expected that the PSIRP kernel API will be able to support multiple upper layers
in the same node.

2. The upper layer(s) will implement the PSIRP library API for the benefit of the
applications. While the exact functionality provided by the PSIRP library API will
depend on the actual functionality offered by PSIRP as a whole, it is expected that this
API will be implemented as a set of new library calls or extensions to existing C library
calls. It is possible that different instances of the upper layer(s) may support different
parts of the PSIRP library API, for example, reliable and unreliable data publication.

The lower layer of the PSIRP prototype will run directly on top of the network device drivers,
for example the Ethernet and Wi-Fi drivers. In order to be compatible with the existing IP
based Internet, the lower layer will also run on top of IP by treating IP as just another link layer
technology, albeit with more capabilities than other link layers. While it is certainly possible to
exploit IP/UDP/TCP in order to allow the PSIRP upper layer(s) to run as an Internet overlay,
this would require the upper layer(s) to interface with two very different underlying layers (the
PSIRP lower layer implementation and IP/UDP/TCP) something that would not only
complicate upper layer design but would also create a tension between the two interfaces in
areas such as optimization. By treating IP as just another link layer technology, the lower layer
implementation will make fewer demands on it (similar to those made on Ethernet and Wi-Fi,
for example, only local node reachability will be assumed) making it possible to completely
avoid using UDP and TCP. This will simplify migration by first making UDP and TCP
redundant, and then allowing the elimination of IP itself. Migration is further simplified by
treating IP as a link layer technology, as this allows IP to be gradually replaced by PSIRP in
individual local networks: when all hosts in a local network have converted to PSIRP, support
for IP can be simply dropped.

In order to simplify migration from the current Internet to a PSIRP based future Internet, the
PSIRP prototype will incorporate at least a Sockets API emulator running on top of the PSIRP
library API, thus allowing legacy applications, such as web browsers, to operate on top of the
PSIRP upper layer(s). It will also be possible to provide custom higher level emulators for
legacy applications so as to improve their performance. For example, web browsing can be
supported either via the Sockets API emulator which will treat the HTTP requests and replies

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 8(11)

simply as a set of TCP sessions, or via a custom and more efficient HTTP emulator that will
translate HTTP requests and replies directly to PSIRP library API calls.

3.3 Applications
Applications are necessary to showcase the functionality enabled by the new paradigm and
the technologies developed in PSIRP. These applications will give a glimpse on the
possibilities, some of which are outlined in our vision and use cases for a PSIRP-enabled
world [2].

However, application development is costly in time and resources. It can easily consume a
substantial (even the major) part of the development effort, driven by issues such as UI
development, user tests, stability tests, support, and documentation, which are well beyond
the scope of PSIRP. We will first outline in the following a process to attract external partners
to our environment, before presenting in more detail the directions in which we intend to steer
some of these activities.

3.3.1 Innovation Process and External Partners
PSIRP does not have the resources necessary to showcase the wide applicability of what the
architecture and its paradigm shift potentially can bring. As a result, we intend to establish an
innovation process in the application space that will allow for attracting the applications we
need in order to showcase what we developed. The efforts within PSIRP will then be limited to
facilitate and enable this innovation process, directly work with partners, feed potential
requirements into the project and so on.

Hence: the innovation process intends to ensure that external partners will innovate on top of
the PSIRP stack to build applications that showcase the possibilities outlined in our vision.

For this, the following steps are taken:

• Select a group of external partners with which PSIRP will directly collaborate in
application development and development support.

• Collaborate with external initiatives and projects, such as the FIRE (Future Internet
Research) initiative or the Onelab2 project, to facilitate experimentally-driven research
on top of PSIRP technology.

• Develop a set of applications with these external partners that will demonstrate the
appeal of the PSIRP platform.

• Hold frequent workshops with external partners to facilitate application development
and disseminate the implementation results.

• Establish a community development process with bug reports, requirements input,
wish list and so on, that is directly fed into the implementation efforts for the upper and
lower layer implementations.

It is worth mentioning that a similar innovation process will be applied for the adaptation of the
PSIRP lower layer implementation onto a variety of link layer technologies, as this is an
equally resource intensive task that cannot be completed within the lifetime of the project.

3.3.2 Driving the Innovation Process
The previous section outlines the general process used to stimulate innovation within the
PSIRP environment. Generally, this process is intended to create a community of developers
for applications but also lower network adaptations, which will enrich the PSIRP environment
beyond the core partners and therefore showcase the technology we will develop.

While this general process is not intended to restrict but rather foster the innovativeness of the
involved external partners, we do intend to maintain specific relations that are steered towards
developing certain solutions, in particular in the application space that will emphasize the

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 9(11)

value of the solutions developed in PSIRP. With this more steered form of collaboration, we
intend to create a dedicated pool of applications for our environment that best demonstrates
its value.

For this, we intend to closely work with a selected set of partners on applications of special
interest. It must be clear however that we cannot guarantee these applications as firm
deliverables, being in line with project work plan. But we can commit to use our limited
resources to prioritize certain communal development towards a set of most interesting use
cases from a project perspective.

These special interest applications are envisioned to be located in the following areas:

• New forms of file sharing: Natural forms of information to be shared within PSIRP are
files as known from today’s computer systems. A demonstrator in this space could
showcase the possibilities stemming from the possibility to distribute files over a large
set of providers, similar to the known BitTorrent and other systems. Such system will
also help to investigate new forms of DRM in sharing such information.

• New forms of participatory sensing: wireless sensing is a potential for future PSIRP
systems (see also the vision and use cases [2]). Hence, special interest is placed on
new forms of participatory sensing systems, potentially based on mobile device
platforms that will take advantage of unique features of our PSIRP system. For
instance, the available open source NORS (Nokia Remote Sensing) platform [3] can
be used as a basis for such development.

• New forms of media consumption: A PSIRP system seems to be a natural candidate
for an evolution of media consumption towards a highly distributed, multipoint-
supporting form of media system. A demonstrator in this area is expected to show the
strengths of a PSIRP platform in this area.

• New forms of context awareness: the information-rich scenarios for context-aware
applications seem to be a natural fit for an information-centric system like PSIRP. Also,
the concepts of scoping information according to context ownership map well onto
concepts of information scopes in PSIRP. Hence, a potential demonstrator in this
space shall shed some light on the potential that such alignment of higher layer
information concepts with lower layer information-centric routing could bring for future
applications in this space.

It is important to note that the innovation will happen within the realm of the expected external
partners. The efforts in PSIRP will be steered to generally enable this innovation. But we will
also work closely with the partners in the above outlined areas to define system requirements
for the demonstrators, provide substantial support and also coordinate dissemination efforts,
i.e., showcase the value of PSIRP with the help of these demonstrators.

3.4 Upper Layer Implementation (UpLI)
The definition of the Upper Layer Implementation (UpLI) is highly dependent on the
contributions of the architecture work in WP2. The first of these architecture contributions, the
conceptual architecture, is scheduled to be available in M6. Therefore, in the present
deliverable only a very rough vision for the upper layer implementation is presented and the
actual first iteration of the UpLI description will be part of the deliverable 3.2, which is
scheduled to become available in M9.

As shown in the layer model in Section 3.1 the current understanding is that UpLI is the middle
layer between the applications and kernel part of the PSIRP prototype implementation, also
called the Lower Layer Implementation (LoLI). UpLI is assumed to be implemented as a
collection of libraries, where the main implementation entity is the PSIRP library API towards
the application layer. The API is supposed to provide pub/sub for both PSIRP aware and
legacy applications. Another interface related to the UpLI will be the PSIRP kernel API, which

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 10(11)

UpLI uses to communicate with the LoLI. In addition to the APIs, UpLI will also implement at
least parts of the rendezvous mechanism, which is actually likely to be a complex set of
different rendezvous mechanisms, responsible for locating and providing the contents in the
pub/sub system. UpLI is also the natural location for the name resolution function, if such is
defined in the architecture. Whether the UpLI will encompass some other functionality is for
further study.

The UpLI will be implemented in user space. Because porting the libraries from a Unix system
to another is supposedly an easy task, the implementation team has not set any strict rules for
the preferred implementation platform. Important issues to be taken into account is that the
implementation must be easily portable to the FreeBSD 7.X platform, due to the possible
future integrated prototype, which naturally suggests avoiding operating system specific
coding practices in the UpLI. The implementation work is planned to have several iteration
rounds tightly connected to the architecture work. Therefore the coding should be done with
programming languages that enable fast prototype cycles. Typically these programming
languages are higher level languages than C or C++ and the implementation team suggests
use of Python or Ruby. However, if it is found feasible and/or appropriate, implementers of the
UpLI may use also other languages.

3.5 Lower Layer Implementation (LoLI)
As is the case for the Upper Layer Implementation, the Lower Layer Implementation is
dependent on the architecture work; therefore a more detailed description will be given in
deliverable 3.2.

As shown in section 3.1, the LoLI will work both directly on top of different network
technologies, such as Ethernet and WiFi, as well as on top of IP. The support for IP networks
is important especially for the transition phase when different types of networks will
simultaneously operate over the same physical network.

The functions that the LoLI is implementing are roughly network attachment, forwarding and
parts of routing and rendezvous. The forwarding function is responsible for efficient data
forwarding from one interface to another, from the interface to the local host (UpLI or other
LoLI function), or from the local host to the interface. The forwarding table is set up by the
routing function. The routing function is also responsible for verifying the link status.

The implementation should support both passive and active modes, i.e. the participant
attaching to a network (or to another node) may either listen to network or it may send a
specific solicitation message. The details of the process will be refined during the architecture
design process and they will be described in more details in future deliverables.

The LoLI will be implemented partly in the kernel, when high performance is needed, and
partly as user space daemons that take care of actions that are not time critical. In LoLI, the
target is to avoid copying of data between different memory locations to avoid unnecessary
delays in data processing. The algorithms, protocols and the software architecture should be
designed so that at least the minimum LoLI (and required parts of UpLI) functionality can in
the future be implemented directly in hardware, such as ASIC chips, to enable deployment in
fast routers as well as e.g. wireless sensor networks.

The assumption related to the hardware to be used while implementing LoLI is that standard
off-the-shelf hardware is used. Due to the reasons specified in Section 2.2 the FreeBSD 7.X
operating system was chosen as the platform for LoLI, thus the hardware must be supported
in FreeBSD 7.X. This is, however, not a significant limitation while most of the common
hardware is supported in FreeBSD 7.X.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.1
Date: 2008-04-30 Security: Public

 Status: Completed Version: 1.0

PSIRP 11(11)

Similar to the applications (see Section 3.3); the limited resources of PSIRP will not allow
adapting the lower layer implementation to all varieties of available link layer technologies.
During the project ethernet, Wi-Fi, and IP will be used as the underlying technologies. For
other technologies, we envision a similar innovation process for extending the PSIRP lower
layers, that is, cooperation with selected external partners on adapting the PSIRP lower layer
implementation for different link layers, thus widening the applicability of the PSIRP stack.

4 Conclusions
This document specified the technology environment for the prototyping work in the PSIRP
project. The licensing terms and their usage in the project were discussed. The separation of
the actual publish/subscribe prototype into two different parts was described creating a
separation between functions that are closely hardware and operating system related and
functions that are more generic in terms of the underlying physical and OS technology. In
addition, used tools for creating a development environment for the actual source code were
specified.

For the applications that are running on top of the actual publish/subscribe implementation, an
innovation process was presented. The target for the innovation process is to get a wider
variety of applications from external partners that utilize the features of publish/subscribe
networking. In addition, a similar innovation process can be adopted for the actual
publish/subscribe implementation parts to get support for other operating systems that those
used inside the project.

5 References
[1] http://wiki.psirp.org

[2] PSIRP Vision Document (http://www.psirp.org)

[3] Nokia Remote Sensing (NORS, http://sourceforge.com/projects/nors)

http://sourceforge.com/projects/nors

	1 Introduction
	1.1 Abbreviations

	2 Environment and Tools
	2.1 Code Management

	2.1.1 Licensing
	2.1.2 Code Availability
	2.1.3 Code Repository and Version Management
	2.1.4 Community Process
	2.2 Operating System

	3 Prototype Plan
	3.1 Overview of Implementation Modules
	3.2 APIs
	3.3 Applications

	3.3.1 Innovation Process and External Partners
	3.3.2 Driving the Innovation Process
	3.4 Upper Layer Implementation (UpLI)
	3.5 Lower Layer Implementation (LoLI)

	4 Conclusions
	5 References

